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ABSTRACT

This paper, for the most part, is in the framework of Internal Set Theory
(IST), where any real number must be infinitesimal, appreciable or unlim-
ited; theses numbers are called standard or nonstandard. In particular,
any positive integer must be standard (limited) or nonstandard (unlim-
ited). In the first part, we estimate for an unlimited positive integer n and
to an infinitesimal near, the values of some arithmetic functions of the

form
f (n)

g (n)
, where f and g are constructed using multiplicative functions.

Further, in the classical mathematics, several Diophantine inequalities
involving certain multiplicative arithmetic functions are studied.

Keywords: Diophantine Inequalities, Multiplicative Functions, Prime
Numbers, Internal Set Theory.
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1. Introduction

This work is placed in the framework of Internal Set Theory introduced by
Robinson (1974) and developed by Nelson (1977), Van den Berg (1992), Diener
and Diener (1995)) and many others. Firstly, we summarize a few auxiliary
results about Internal Set Theory that we need, see Bellaouar et al. (2019).

Historically, Leibniz, Euler and Cauchy are among the first who began the
use of infinitely small quantities. In order to use better this notion, A. Robinson
(1961) proposed another approach, namely, the nonstandard analysis. In 1977,
E. Nelson provided another presentation of the nonstandard analysis, called
IST (Internal Set Theory), based on ZFC to which is added a new unary pred-
icate called ”standard”. The use of this predicate is governed by the following
three axioms: Idealization principle, Standardization principle and Transfer
principle. For details, see Nelson (1977),Robinson (1974),Kanovei and Reeken
(2013).

Recall that any real number that can be characterized in unique classical
way is necessarily standard. Thus, 0, 1, ..., 101000, ... are standard. But not all
integers are standard. A real number ω is called unlimited, or infinitely large if
its absolute value |ω| is larger than any standard integer n. So a nonstandard
integer ω is also an unlimited real number; ω−

√
2 is an example of an unlimited

real number that is not an integer. A real number ε is called infinitesimal, or

infinitely small, if its absolute value |ε| is smaller than
1

n
for any standard n.

Of course, 0 is infinitesimal but (fortunately) it is not the only one: ε =
1

ω
is infinitesimal, provided ω is unlimited. A real number r is called limited if
it is not unlimited and appreciable if it is neither unlimited nor infinitesimal.
Finally, two real numbers x and y are equivalent or infinitely close (written
x ' y) if their difference x − y is infinitesimal. For details, see (Diener and
Diener, 1995, p. 2-4).

In mathematics, we describe as internal a formula which is expressible in
the classical language (ZFC) and as external, a formula of the nonstandard lan-
guage (IST) which involves the new predicate "standard" or one of its deriva-
tives such as " infinitesimal " or " limited " Kanovei and Reeken (2013). For
example, the formula [2x < 2ε+4⇒ x < ε+2] is internal whereas the formula
[x ' +∞⇒

√
x+ 1 ' +∞] is external.

Definition 1.1 (Kanovei and Reeken (2013)). We call internal any set defined
by means of an internal formula and we call external any subset of an internal
set defined by means of an external formula, which is not (reduced to) an in-
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ternal set.

Based on the above facts, we qualify mathematical objects as internal or
external. For example, we say that a function is internal (resp. external) if its
graph is internal (resp. external), and so on.

Definition 1.2 (see, (Diener and Diener, 1995, p. 20)). Let X be a standard
set, and let (Ax)x∈X be an internal family of sets.

• A union of the form G =
⋃

stx∈X
Ax is called a pregalaxy ; if it is external

G is called a galaxy.

Example 1.1 (for details, see Bellaouar and Boudaoud (2015)). We have

• The set of limited positive integers Nσ is a galaxy.

The following principle is important for the proof of Theorem 3.3.

Theorem 1.1 (Cauchy’s principle Diener and Diener (1995)). No external set
is internal.

The main purpose of this paper is using the nonstandard analysis and some
notions from elementary number theory to study the following near Diophantine
equation:

F (n) ' l, (1)

where F is an arithmetic function and l ∈ N is a parameter. The equation of
the form (1) is called an external equation. This name comes from the fact
that F (n) is equivalent to l, i.e., F (n) is very near to l within the meaning
of the theory of IST, that is, an external formulation. Therefore, (1) is more
general than the internal equation F (n) = l. More precisely, we research
for integers n making F (n) equivalent to l. On the other hand, we present
classical and nonclassical results concerning some inequalities involving certain
multiplicative functions.

The paper is structured as follows: There are three subsections. In Subsec-
tion 3.1, some near Diophantine equations are studied. That is, we estimate
for an unlimited positive integer n the values of some arithmetic functions of

the form
f (n)

g (n)
, where f and g are formed by the sum and the product of well-

known multiplicative functions. Moreover, we prove that if
σ (n)

n
is unlimited,
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then the number of distinct prime factors of n cannot be limited, where σ (n)
is the sum of all of the positive divisors of n. In Subsection 3.2, we study
several different types of Diophantine inequalities, some of which deal with the
comparison of two arithmetic functions, where the first member is formed by
the product and the sum of certain multiplicative arithmetic functions and the
second is an integer-valued polynomial whose leading coefficient is positive. Fi-

nally, in Subsection 3.3, we give some properties of the quantity
τs (ab)

τ (as) τ (bs)
in the case when a, b are unlimited and s ≥ 2, where τ (n) is the number of
positive divisors of n and τs (n) = (τ (n))

s.

2. Basic tools

In this paper, we continue the research from Bellaouar (2016). Firstly, let

n = qα1
1 qα2

2 . . . qαr
r ,

where r, α1, α2, ..., αr are natural numbers and q1, q2, ..., qr are different primes.
We need to use the following facts, see De Koninck and Mercier (2004):

1. Recall that ϕ (n) is, by definition, the number of congruence classes in

the set (
Z

nZ
)∗ of invertible congruence classes modulo n . Let ψ be the

Dedekind function, and let s ≥ 1. We have

ϕs (n) = ns
r∏
i=1

(
1− 1

qsi

)
and ψs (n) = ns

r∏
i=1

(
1 +

1

qsi

)
,

where ϕs (1) = ψs (1) = 1. Note that for s = 1, ϕ1 = ϕ and ψ1 = ψ.

2. Let σ (n) denote the arithmetic function as we stated in the introduction.
That is,

σ (n) =

r∏
i=1

qαi+1
i − 1

qi − 1
.

3. Let τ(n) denote the number of positive divisors of n. We have

τ (n) =

r∏
i=1

(αi + 1) .

4. Let ω (n) denote the number of distinct prime factors of n. That is,
ω (n) = r. As used in Bellaouar (2016), we let
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Wk = {n ∈ N / ω (n) ≥ k} .
Finally, we also need the following theorems.

Theorem 2.1 (Dickson’s conjecture, Dickson (1904)). Let s ≥ 1, fi (x) =
bix + ai with ai, bi integers, bi ≥ 1 (for i = 1, 2, ..., s ). Assume that the
following condition is satisfied:
(∗) ” There does not exist any integer n > 1 dividing all the products

f1 (k) .f2 (k) ...fs (k) ,

for every integer k ”. Then, f1(m), f2 (m) , . . . , fs(m) are simultaneously prime
for infinitely many values of m.

Theorem 2.2 (for details, see Boudaoud (2006)). Assuming the Dickson Con-
jecture, for each couple of integers q > 0 and k > 0, there exists an infinite
subset Lq,k ⊂ N such that for every n ∈ Lq,k and for every s with 0 < |s| ≤ q,
we have

n+ s = |s| t1t2...tk,
where t1 < t2 < ... < tk are prime numbers. In addition, for each couple of
integers q > 0 and k > 0, there exists an infinite subset Mq,k ⊂ N such that for
every n ∈Mq,k and for every s ∈ [−q, q], we have

n+ s = lt1t2...tk,

where t1 < t2 < ... < tk are also prime numbers and l ∈ [1, 2q + 1].

Theorem 2.3 (Bertrand’s Theorem,(Wells, 2005, p. 20)). If n is an integer
greater than 2, then there is at least one prime between n and 2n− 1.

Theorem 2.4 (Bone’s inequality, (Wells, 2005, p. 21)). If pn is the n-th prime
number, then

p2n+1 < p1p2...pn

provided n ≥ 4.

3. Main Results

Throughout the paper p, (pi)1≤i≤r , (qi)1≤i≤r, with or without subscripts,
always denote primes; a, α,m, n, r, s, ... denote positive integers. Limited num-
bers and infinitesimal numbers are denoted by £ and φ, respectively.

Our main results are divided into three subsections.
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3.1 On certain external equations

Let f and g be two functions expressed by the product and the sum of cer-
tain multiplicative arithmetic functions. In this section, we prove the existence

of an infinity of values of n such that
f (n)

g (n)
is equivalent to an appreciable

rational number. We start by the following theorem.

Theorem 3.1. Assuming the Dickson Conjecture as in Theorem 2.2, if k, q
are limited then for every unlimited n ∈ Lq,k and for every positive integer
s ≤ q, we have

σ(n+ s)ϕ(n+ s)

(n+ s)2
' σ(l)ϕ(l)

l2
(2)

for some limited positive integer l.

Proof. From Theorem 2.2, we assume that n+ s = st1t2...tk, where 0 < t1 <
t2 < ... < tk are prime numbers. There are two cases to consider.

Case 1. Suppose that ti ' +∞ for i = 1, 2, ..., k. Since (s, t1t2...tk) = 1, it
follows that

σ(n+ s)ϕ(n+ s)

(n+ s)2
=

σ(st1t2...tk)ϕ(st1t2...tk)

(st1t2...tk)2

=
σ(s)σ(t1t2...tk)ϕ(s)ϕ(t1t2...tk)

s2(t1t2...tk)2

=
σ(s)ϕ(s)

s2

(
σ(t1t2...tk)ϕ(t1t2...tk)

(t1t2...tk)2

)
(3)

=
σ(s)ϕ(s)

s2

(
(t1 + 1)(t2 + 1)...(tk + 1)(t1 − 1)(t2 − 1)...(tk − 1)

(t1t2...tk)2

)
=

σ(s)ϕ(s)

s2

(
(t21 − 1)(t22 − 1)...(t2k − 1)

(t1t2...tk)2

)

=
σ(s)ϕ(s)

s2


t21t

2
2...t

2
k

k∏
i=1

(1− 1

t2i
)

(t1t2...tk)2


=

σ(s)ϕ(s)

s2

k∏
i=1

(1− 1

t2i
). (4)
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Since k, s are limited, then

σ(n+ s)ϕ(n+ s)

(n+ s)2
=

σ(s)ϕ(s)

s2
(1− φ) (5)

=
σ(s)ϕ(s)

s2
− φ

' σ(s)ϕ(s)

s2
,

which proves (2) with l = s.

Case 2. Suppose that there exists a positive integer i0 such that ti is
limited for i = 1, 2, ..., i0, and tj is unlimited for j = i0 + 1, ..., k. From
Theorem 2.2 once again, we assume that n + s = st1t2...ti0ti0+1...tk. Since
(st1t2...ti0 , ti0+1...tk) = 1, then

σ(n+ s)ϕ(n+ s)

(n+ s)2
=

σ(st1t2..ti0 ..tk)ϕ(st1t2..ti0 ..tk)

(st1t2...ti0ti0+1...tk)2

=
σ(st1t2...ti0)ϕ(st1t2...ti0)σ

(
ti0+1

...tk
)
ϕ(ti0+1

...tk)

(st1t2...ti0)
2
(ti0+1...tk)

2

=
σ (s′)ϕ(s′)

(s′)
2

(
σ(ti0+1

...tk)ϕ(ti0+1
...tk)

(ti0+1
...tk)2

)
,

where s′ = st1t2...ti0 is limited. Furthermore, as in (3), (4) and (5), we have

σ(ti0+1
...tk)ϕ((ti0+1

...tk)

(ti0+1
...tk)2

= 1− φ.

Thus,

σ(n+ s)ϕ(n+ s)

(n+ s)2
=

σ (s′)ϕ(s′)

(s′)
2 (1− φ)

=
σ (s′)ϕ(s′)

(s′)
2 − φ

' σ (s′)ϕ(s′)

(s′)
2 .

That is, l = s′. This completes the proof of Theorem 3.1.

Now, we let W denote the set

W = {n ∈ N; ω (n) is limited and p ' +∞ for any p | n} .
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In the following proposition we present an arithmetic function of the form
f

g
such that

f (n)

g (n)
' 1,

for any n ∈W.

Proposition 3.1. For each natural number n ∈W , we have

σ (n)ϕ (n)

n2
= 1− φ,

where φ denotes an infinitesimal real number.

Proof. Let n = qα1
1 qα2

2 ...qαr
r ∈ W with αi ≥ 1, for i = 1, 2, ..., r. Since r is

limited, it follows that

σ (n)ϕ (n)

n2
=

σ (qα1
1 qα2

2 ...qαr
r )ϕ (qα1

1 qα2
2 ...qαr

r )

q2α1
1 q2α2

2 ...q2αr
r

=

r∏
i=1

qαi+1
i − 1

qi − 1

r∏
i=1

(
1− 1

qi

)
qα1
1 qα2

2 ...qαr
r

=

r∏
i=1

1− 1

qαi+1
i

1− 1

qi

 r∏
i=1

(
1− 1

qi

)

=

r∏
i=1

(1− φi)
r∏
i=1

(1− φi)

= 1− φ.

This completes the proof.

Let s ≥ 1 be a limited positive integer. In the following corollary we present

an arithmetic function of the form
f

g
such that

f (sn)

g (sn)
' f (s)

g (s)
,

for any n ∈W .
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Corollary 3.1. Let s be a limited positive integer. For every n ∈W , we have

σ (sn)ϕ (sn)

(sn)
2 =

σ (s)ϕ (s)

s2
− φ.

Proof. Let n ∈W and let s ≥ 1 be a limited positive integer. Since (s, n) = 1,
it follows from Proposition 3.1 that

σ (sn)ϕ (sn)

(sn)
2 =

σ (s)ϕ (s)

s2

(
σ (n)ϕ (n)

n2

)
=

σ (s)ϕ (s)

s2
(1− φ)

=
σ (s)ϕ (s)

s2
− φ.

This completes the proof.

Proposition 3.2. Let s be a limited positive integer. For every n = pα1
1 pα2

2 ...pαr
r ∈

W with αi ∈ {1,2} for all 1 ≤ i ≤ r,

ϕ(sn) + σ(sn)

γ2(sn)
= £.

If αi > 2 for all 1 ≤ i ≤ r, then

ϕ(sn) + σ(sn)

γ2(sn)
' +∞.

Proof. Since (s, n) = 1, then

ϕ(sn) + σ(sn)

γ2(sn)
=

ϕ(s)ϕ(n) + σ(s)σ(n)

γ2(s)γ2(n)

=
ϕ(s)

γ2(s)

(
ϕ(n)

γ2(n)

)
+

σ(s)

γ2(s)

(
σ(n)

γ2(n)

)
= a.

ϕ(n)

γ2(n)
+ b.

σ(n)

γ2(n)
,

where a =
ϕ(s)

γ2(s)
and b =

σ(s)

γ2(s)
are limited rational numbers. Moreover, since

n ∈ W , then n = pα1
1 pα2

2 ...pαr
r with p1, p2, ..., pr are distinct unlimited primes
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and αi ≥ 1, for i = 1, 2, ..., r. Thus,

ϕ(sn) + σ(sn)

γ2(sn)
= a.

pα1
1 pα2

2 ...pαr
r

r∏
i=1

(
1− 1

pi

)
p21p

2
2...p

2
r

+ b.

pα1
1 pα2

2 ...pαr
r

r∏
i=1

 1−
1

pαi+1
i

1−
1

pi


p21p

2
2...p

2
r

= a
r∏
i=1

pαi−2
i

r∏
i=1

(
1− 1

pi

)
+ b

r∏
i=1

pαi−2
i

r∏
i=1

1− 1

pαi+1
i

1− 1

pi

 .

Now if αi ∈ {1,2} for all 1 ≤ i ≤ r, then

ϕ(sn) + σ(sn)

γ2(sn)
≤ a

r∏
i=1

(
1− 1

pi

)
+ b

r∏
i=1

1− 1

pαi+1
i

1− 1

pi

 . (6)

Since r is limited and
1

pi
' 0 for i = 1, 2, ..., r, then the right hand side of (6)

is limited. Hence,
ϕ(sn) + σ(sn)

γ2(sn)
= £.

The case αi > 2, for all 1 ≤ i ≤ r, implies

ϕ(sn) + σ(sn)

γ2(sn)
= a

r∏
i=1

pαi−2
i

r∏
i=1

(
1− 1

pi

)
+ b

r∏
i=1

pαi−2
i

r∏
i=1

1− 1

pαi+1
i

1− 1

pi


' +∞,

since

r∏
i=1

(
1− 1

pi

)
'

r∏
i=1

1− 1

pαi+1
i

1− 1

pi

 ' 1. (7)

This completes the proof.

Proposition 3.3. Let s be a limited positive integer. For every n ∈ W , we
have

ϕ2(sn)σ2(sn)

(sn)
2 ' +∞.
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Proof. Let n ∈W . Since (s, n) = 1, it follows that

σ2(sn)ϕ2(sn)

(sn)
2 =

σ2(s)ϕ2(s)

s2

(
ϕ2(n)σ2(n)

n2

)
=

σ2(s)ϕ2(s)

s2

(
ϕ2(pα1

1 pα2
2 ...pαr

r )σ2(pα1
1 pα2

2 ...pαr
r )

(pα1
1 pα2

2 ...pαr
r )2

)

=
σ2(s)ϕ2(s)

s2
p2α1
1 p2α2

2 ...p2αr
r

r∏
i=1

(1− 1

pi
)2

r∏
i=1

1− 1

pαi+1
i

1− 1

pi


2

' +∞,

which is valid by (7). This completes the proof.

Next, we prove that if the report
σ (n)

n
is unlimited, then ω (n) cannot be

limited.

Proposition 3.4. Let a be an unlimited real number and let n be an arbitrary
solution of the inequality σ(n) ≥ an. Then ω(n) is unlimited.

Proof. By contradiction, suppose that n has a limited number of distinct prime
factors q1 < q2 < ... < qs, where s is limited. It follows from (De Koninck and
Mercier, 2004, Problem 516) that

+∞ ' a ≤ σ(n)

n
<

s∏
i=1

qi
qi − 1

' £,

where £ ∈ Q is limited. This is a contradiction.

Remark 3.1. Let P be the sequence of primes in ascending order. Let n be
an arbitrary solution of the inequality σ(n) ≥ an, where a is unlimited. Then

a ≤ σ(n)

n
=
∑
d|n

1

d
=
∑
p|n

1

p
+
∑
d|n
d/∈P

1

d
' +∞.

It follows that at least one of the numbers
∑
p|n

1

p
and

∑
d|n
d/∈P

1

d
is unlimited. Thus,

in each of the cases, n has an unlimited number of distinct prime factors.
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Remark 3.2. We also prove Proposition 3.4 as follows: For every positive
integer n, as stated in (De Koninck and Mercier, 2004, Problem 618), we have

σ(n)

n
<


(
3

2

)ω(n)
; if n is odd,

2.

(
3

2

)ω(n)−1
; if n is even.

Then if
σ(n)

n
is unlimited, so does ω (n).

3.2 On certain multiplicative functions which are bounded
by a polynomial with integer coefficients.

In the present section we study several Diophantine inequalities, some of
which are formed by the product and the sum of certain multiplicative arith-
metic functions on the left side, and by integer-valued polynomials whose lead-
ing coefficients are positive on the right side.

Theorem 3.2. Let s and n be positive integers with n ≥ 2. Then,

ϕs (n)
τ(n)

ψs (n)σ (n) ≥ n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1. (8)

Proof. Firstly, for s = 1, we note that

ϕ (n)
τ(n)

ψ (n)σ (n)−
(
n4 − 2n2 + 1

)
=

{
0, for n = p,
111, for n = 4.

Next, it suffices to show that if ϕ (n)
τ(n)

ψ (n)σ (n) ≥ n4 − 2n2 + 1 for some
n ≥ 3, then it is also true for pn with p ≥ 2 is prime. Indeed, for each such
integer n and for any prime p ≥ 2 we distinguish two cases.
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1. When p does not divide n. Since ϕ (n) ≥ 2 and τ (n) ≥ 2, it follows that

ϕ (pn)
τ(pn)

ψ (pn)σ (pn) = (p− 1)
2τ(n)

ϕ (n)
2τ(n)

(1 + p)
2
ψ (n)σ (n)

= (p− 1)
2τ(n)

ϕ (n)
τ(n)

(1 + p)
2
[
ϕ (n)

τ(n)
ψ (n)σ (n)

]
≥ (p− 1)

2τ(n)
ϕ (n)

τ(n)
(1 + p)

2 (
n4 − 2n2 + 1

)
≥ (p− 1)

4
22 (1 + p)

2 (
n4 − 2n2 + 1

)
= n4

(
4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 4

)
+

n2
(
−8p6 + 16p5 + 8p4 − 32p3 + 8p2 + 16p− 8

)
+

4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 4.

Thus,

ϕ (pn)
τ(pn)

ψ (pn)σ (pn)−
(
(pn)

4 − 2 (pn)
2
+ 1
)

(9)

≥ n4
(
4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4

)
+

n2
(
−8p6 + 16p5 + 8p4 − 32p3 + 10p2 + 16p− 8

)
+

4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 3.

Using the graph of the function x 7→ 4x6−8x5−4x4+16x3−4x2−8x+3,
we have

4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 3 > 0. (10)

In fact, we see that

4p6− 8p5− 4p4 +16p3− 4p2− 8p = 4p4
(
p2 − 2p− 1

)
+4p

(
4p2 − p− 2

)
,

where p2− 2p− 1 > 0 holds for every p ≥ 3 and 4p2− p− 2 > 0 holds for
every p ≥ 2. This proves (10) for every p ≥ 2, since its value at p = 2 is
35. Moreover, from the graph of the function:

x 7→ 8x6 − 16x5 − 8x4 + 32x3 − 10x2 − 16x+ 8

4x6 − 8x5 − 5x4 + 16x3 − 4x2 − 8x+ 4
,

and by using the same manner as those of the proof of (10) we can prove
that

0 <
8p6 − 16p5 − 8p4 + 32p3 − 10p2 − 16p+ 8

4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4
≤ 3.2.

Since n ≥ 2, then

n2 >
−
(
−8p6 + 16p5 + 8p4 − 32p3 + 10p2 + 16p− 8

)
4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4

> 0. (11)
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Setting

A = 4p6 − 8p5 − 4p4 + 16p3 − 4p2 − 8p+ 3,
B = −8p6 + 16p5 + 8p4 − 32p3 + 10p2 + 16p− 8,
C = 4p6 − 8p5 − 5p4 + 16p3 − 4p2 − 8p+ 4.

Since A > 0 and n2 >
−B
C

, it follows from the inequality (9) that

ϕ (pn)
τ(pn)

ψ (pn)σ (pn)−
(
(pn)

4 − 2 (pn)
2
+ 1
)
> n4C + n2B +A > 0.

2. When p divides n. Since ψ (pn) = pψ (n), ϕ (pn) = pϕ (n), σ (pn) >
pσ (n) and τ (pn) ≥ τ (n) + 1, then

ϕ (pn)
τ(pn)

ψ (np)σ (np) = (pϕ (n))
τ(pn)

ψ (pn)σ (pn)

> pτ(pn)+2ϕ (n)
τ(pn)

ψ (n)σ (n)

≥ pτ(n)+3ϕ (n)
τ(n)+1

ψ (n)σ (n)

= pτ(n)+3ϕ (n)
[
ϕ (n)

τ(n)
ψ (n)σ (n)

]
≥ pτ(n)+3ϕ (n)

(
n4 − 2n2 + 1

)
≥ 2n4p5 − 4n2p5 + 2p5.

Therefore,

ϕ (pn)
τ(pn)

ψ (pn)σ (pn)−
(
(pn)

4 − 2 (pn)
2
+ 1
)

≥ 2n4p5 − n4p4 − 4n2p5 + 2n2p2 + 2p5 − 1

= n4
(
2p5 − p4

)
+ n2

(
−4p5 + 2p2

)
+ 2p5 − 1. (12)

Since p ≥ 2, then 2p5 − 1 > 0. Using the graph of the function x 7→
4x5 − 2x2

2x5 − x4
and the proof of (10), we can also prove that

0 <
4p5 − 2p2

2p5 − p4
≤ 5

2
.

Since n ≥ 2, then

n2 >
−
(
−4p5 + 2p2

)
2p5 − p4

> 0. (13)

It follows from (12),(13) that

ϕ (pn)
τ(pn)

ψ (pn)σ (pn)−
(
(pn)

4 − 2 (pn)
2
+ 1
)
> 0.

Hence, for s = 1, we have proved that the inequality ϕ (n)
τ(n)

ψ (n)σ (n) ≥
n4 − 2n2 + 1 is true for every n ≥ 2.
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Now, assume for some s ≥ 1 that the desired inequality holds for any
composite positive integer n. We distinguish two cases:

Case 1. Suppose that n is not the square of a prime number. Then

ϕs+1 (n)
τ(n)

ψs+1 (n)σ (n)

=

ns+1
∏
p|n

(
1− 1

ps+1

)τ(n)

ns+1
∏
p|n

(
1 +

1

ps+1

)
σ (n)

= nτ(n)

ns∏
p|n

(
1− 1

ps+1

)τ(n)

ns+1
∏
p|n

(
1 +

1

ps+1

)
σ (n)

≥ nτ(n)

ns∏
p|n

(
1− 1

ps

)τ(n)

ns
∏
p|n

(
1 +

1

ps

)
σ (n)

= nτ(n)
[
ϕs (n)

τ(n)
ψs (n)σ (n)

]
≥ nτ(n)

(
n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1

)
Therefore,

ϕs+1 (n)
τ(n)

ψs+1 (n)σ (n) ≥ n4
(
n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1

)
(14)

= n3s+5 + n3s+4 − n2s+5 − n2s+4 − ns+5 − ns+4 + n5 + n4,

where (14) holds because n is not of the form p2 with p is prime, and therefore
τ (n) ≥ 4. Since n ≥ 6, it follows that

ϕs+1 (n)
τ(n)

ψs+1 (n)σ (n)−
(
n3s+4 + n3s+3 − n2s+3 − n2s+2 − ns+2 − ns+1 + n+ 1

)
≥ n3s+5 − n3s+3 − n2s+4 + n2s+3 − n2s+5 + n2s+2 − ns+5 − ns+4 + ns+2 +

ns+1 + n5 + n4 − n− 1

≥ 63s+5 − 63s+3 − 22s+4 + 62s+3 − 62s+5 + 62s+2 − 6s+5 − 6s+4 + 6s+2 +

6s+1 + 65 + 64 − 6− 1

= 7560× 63s − 8820× 62s − 9030× 6s + 9065

≥ 1270 325.

Note that when n is prime, the inequality (8) becomes

ϕs (n)
τ(n)

ψs (n)σ (n) = (ns − 1)
2
(ns + 1) (n+ 1)

= n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1.
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Case 2. Suppose that n = p2 for some prime number p ≥ 2. We also have

ϕs (n)
τ(n)

ψs (n)σ (n) =
(
p2s − ps

)3 (
p2s + ps

) (
1 + p+ p2

)
= p8s+2 + p8s+1 + p8s − 2p7s+2 − 2p7s+1 − 2p7s +

2p5s+2 + 2p5s+1 + 2p5s − p4s+2 − p4s+1 − p4s.

Therefore,

ϕs (n)
τ(n)

ψs (n)σ (n)−
(
n3s+1 + n3s − n2s+1 − n2s − ns+1 − ns + n+ 1

)
≥ p8s+2 + p8s+1 + p8s − 2p7s+2 − 2p7s+1 − 2p7s − p6s+2 − p6s + 2p5s+2 +

2p5s+1 + 2p5s + p2s+2 − p4s+1 + p2s − p2 − 1

≥ 7× 28s − 14× 27s − 5× 26s + 14× 25s − 2× 24s + 5× 22s − 5

≥ 111,

since p ≥ 2. Hence, (8) is true for n = p2 with p is prime.

Thus, our assertion is proved by induction on s. This completes the proof
of Theorem 3.2.

Remark 3.3. In the case when n = p2 with p is prime, then (14) becomes

ϕs+1 (n)
τ(n)

ψs+1 (n)σ (n) ≥ n3s+4+n3s+3−n2s+3−n2s+4−ns+4−ns+3+n4+n3,

since τ (n) = 3. Hence,

ϕs+1 (n)
τ(n)

ψs+1 (n)σ (n)−
(
n3s+4 + n3s+3 − n2s+3 − n2s+2 − ns+2 − ns+1 + n+ 1

)
≥ −n2s+4 + n2s+2 − ns+4 − ns+3 + ns+2 + ns+1 + n4 + n3 − n− 1, (15)

where the leading coefficient of (15) is negative. Therefore, in this case, the
inequality (8) can not be easily deduced for s+ 1.

The next that we will study is a Diophantine inequality involving the arith-

metic function
ψs (n)

ns
. Let pr be the r-th prime number with r ≥ 2, and let

s ≥ 1. We define

Br,s =

{
n ∈ N /ψs (n) <

pr
pr−1

ns
}
.

Note that if n is an even positive integer, then n /∈ Br,s. In fact, assume
that n = 2aN with a ≥ 1 and (2, N) = 1, then by applying Bertrand’s theorem
we obtain

pr−1ψs (n) = pr−1ψs (2
aN) = pr−1 (2

s + 1) 2s(a−1)ψs (N) > prN
s.
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Proposition 3.5. Suppose that n /∈ Br,s for some r ≥ 2 and s ≥ 1, then there
are infinity many positive integers s′ such that n ∈ Br,s+s′ .

Proof. Let n /∈ Br,s for some r ≥ 2 and s ≥ 1. Since the sequence∏
p|n

(
1 +

1

pm

)
m≥1

is decreasing and tends to 1 as m tends to infinity, then there exists a unique
positive integer s0 such that∏
p|n

(
1 +

1

ps+s0−1

)
≥ pr
pr−1

>
∏
p|n

(
1 +

1

ps+s0

)
>
∏
p|n

(
1 +

1

ps+s0+1

)
> ....

That is, for every s′ ≥ s0, we have n ∈ Br,s+s′ . This completes the proof.

In the paper of Sandor (2008), it is proved that for every n ≥ 2,

σ (n) > n+ (ω (n)− 1)
√
n.

A new similar result is given by the following proposition.

Proposition 3.6. Let k ≥ 1. There are infinitely many n ∈Wk such that

σ (n) > 1 + n+ ω (n)
√
n.

Proof. Let s be a positive integer such that s ≥ max {4, k}, and let ps be the
s-th prime number. For n = p1p2...ps, we obtain from Bone’s inequality stated
by (Wells, 2005, p. 21),

p2s+1 < p1p2...ps = n.

Since pi <
√
n for i = 1, 2, ..., s, it follows that

n

p1
>

n

p2
> ... >

n

ps
>
√
n,

and therefore

σ (n) > 1 + n+

s∑
i=1

n

pi

> 1 + n+ s
√
n

= 1 + n+ ω (n)
√
n.

As required.
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The following theorem improves the result stated in Proposition 3.6.

Theorem 3.3. Let f be an arbitrary integer-valued polynomial with f (n) 6= 0
for any n ∈ N. There exists an infinite subset of positive integers A such that
for every a ∈ A, there exists a positive integer b ≤ ω (a) satisfying

σ (a) > 1 + a+ f (b)
√
a.

Proof. From Transfer Principle (this is the third Axiom of Internal Set Theory),
we prove our theorem in the case when f is standard (i.e., f does not include
unlimited coefficients). Let pn be the n-th prime number. We put

A = {a ∈ N | a = p1p2...ps with s ' +∞} .

Let a = p1p2...ps ∈ A. Since
√
a is unlimited, then for every limited positive

integer i ≤ s,
pi <

i

f (i)

√
a.

Define the internal subset
{
i ∈ N | pi <

i

f (i)

√
a

}
, which contains the galaxy

Nσ. By Cauchy’s principle stated in Theorem 1.1, there exists an unlimited
positive integer b ≤ s = ω (a) such that

pb <
b

f (b)

√
a.

Therefore,
n

p1
>

n

p2
> ... >

n

pb
>
f (b)

b

√
a.

It follows that

σ (a) > 1 + a+

b∑
i=1

a

pi

> 1 + a+ f (b)
√
a.

This completes the proof.

3.3 On the fraction defined by τ s (ab) and τ (as) τ (bs) with
s ≥ 1

Let s ≥ 2 be a positive integer. We aim to study the growth of the sequence

τs (ab)

τ (as) τ (bs)
, where (a, b) ∈ N2.
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In the present section we present some cases for which the above quantity is
unlimited.

Proposition 3.7. Let a, b be unlimited positive integers. If one of the following
conditions holds:

1. There exists a prime number p such that pc|a for some unlimited c, pn
does not divide b for every unlimited n, and vice versa.

2. The cardinality of the set
{
p ∈ P; ∃ α, β ≥ 1 such that α 6= β, pα||a and pβ ||b

}
is unlimited.

3. The cardinality of the set {p ∈ P; p|a and p does not divide b} is unlim-
ited, and vice versa.

Then for every s ≥ 2, we have

τs (ab)

τ (as) τ (bs)
' +∞.

Proof. Suppose that a =
k∏
i=1

pαi
i , b =

k∏
i=1

pβi

i , where αi, βi ≥ 0 for i = 1, 2, ..., k,

pi is the i-th prime number and k = max {i ≥ 1 | (αi, βi) 6= (0, 0)}. It follows
that, 

τ (as) =
k∏
i=1

(sαi + 1) ,

τ (bs) =
k∏
i=1

(sβi + 1) .

Since ab =
k∏
i=1

pαi+βi

i , it follows that

τs (ab) =

k∏
i=1

(αi + βi + 1)
s .

Therefore,
τs (ab)

τ (as) τ (bs)
=

k∏
i=1

(αi + βi + 1)
s

(sαi + 1) (sβi + 1)
. (16)

Suppose that the first condition holds. Since
αsi + βsi + 1

(sαi + 1) (sβi + 1)
≥ 1 for all
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1 ≤ i ≤ k, then it follows from (16) that

τs (ab)

τ (as) τ (bs)
=

k∏
i=1

(αi + βi + 1)
s

(sαi + 1) (sβi + 1)

≥
k∏
i=1

αsi + βsi + 1

(sαi + 1) (sβi + 1)

=

k∏
i=1

αs−1i

s2βi
+
βs−1i

s2αi
+

1

s2αiβi

1 +
1

sβi
+

1

sαi
+

1

s2αiβi
' +∞,

because there exists i0 ∈ {1, 2, ..., k} such that the number
αs−1io

s2βio
is unlimited.

When the second condition holds. Since k is unlimited and s ≥ 2, then
from (16) we have

τs (ab)

τ (as) τ (bs)
=

k∏
i=1

(αi + βi + 1)
s

(sαi + 1) (sβi + 1)

=

k∏
i=1

(1 + ai)

' +∞,

because
(αi + βi + 1)

s

(sαi + 1) (sβi + 1)
− 1 = ai is either appreciable or unlimited, for

i = 1, 2, ..., k.

When the third condition holds. From (16) we get

τs (ab)

τ (as) τ (bs)
=

k∏
i=1

(αi + βi + 1)
s

(sαi + 1) (sβi + 1)

>
∏

i∈{t :1≤t≤k, αt 6=0, βt=0}

(αi + 1)
s

(sαi + 1)

=
∏

i∈{t :1≤t≤k, αt 6=0, βt=0}

(1 + ai)

' +∞,
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because
(αi + 1)

s

(sαi + 1)
− 1 = ai is either appreciable or unlimited, for every i

belongs to the set {t : 1 ≤ t ≤ k, αt 6= 0, βt = 0}.

Finally, we prove the following corollary.

Corollary 3.2. Let a, b be positive integers. There exist two integers R, T ≥ 0
such that

τ2 (ab)

τ (a2) τ (b2)
≥
(
4

3

)R+T

.

Proof. Suppose that a =
k∏
i=1

pαi
i , b =

k∏
i=1

pβi

i , where αi, βi ≥ 0 for i = 1, 2, ..., k,

pi is the i-th prime number and k = max {i ≥ 1 | (αi, βi) 6= (0, 0)}. Since

τ2 (ab)

τ (a2) τ (b2)
=

∏
{t :1≤t≤k, αt 6=0, βt=0}

(αi + βi + 1)
2

(2αi + 1) (2βi + 1)
.

∏
{t :1≤t≤k, αt 6=0, βt=0}

(αi + 1)
2

(2αi + 1)
.

∏
{t :1≤t≤k, αt=0, βt 6=0}

(βi + 1)
2

(2βi + 1)
,

where

(αi + βi + 1)
2

(2αi + 1) (2βi + 1)
=

(
1 +

(αi − βi)2

(2αi + 1) (2βi + 1)

)
≥ 1, for i = 1, 2, ..., k with αi 6= 0, βi 6= 0.

It follows from (16) that

τ2 (ab)

τ (a2) τ (b2)
≥

∏
{t :1≤t≤k, αt 6=0, βt=0}

(
1 +

α2
i

2αi + 1

) ∏
{t :1≤t≤k, αt=0, βt 6=0}

(
1 +

β2
i

2βi + 1

)
.

We putR = Card
{
t ∈ 1, k; αt 6= 0 and βt = 0

}
and T = Card

{
t ∈ 1, k; αt = 0 and βt 6= 0

}
,

then
τ2 (ab)

τ (a2) τ (b2)
≥
(
4

3

)R+T

,

where
α2
i

2αi + 1
≥ 1

3
, for i = 1, 2, ..., r and

β2
i

2βi + 1
≥ 1

3
, for i = 1, 2, ..., t. This

completes the proof.
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4. Conclusion

In this paper we consider reports of the form
f (n)

g (n)
, where f, g are two

arithmetic multiplicative functions. Note that for this report there exists a

family Sf/g of unlimited integers such that for every n ∈ Sf/g ,
f (n)

g (n)
remains

equivalent to the same value, say l. Hence, our work consists of all solutions of
certain Diophantine equations of the form:

f (n)

g (n)
' l. (17)

Note that solving equations of the form (17) is easier and more flexible than

solving
f (n)

g (n)
= l, since all its solutions are also solutions to (17). That is, (17)

is more general than
f (n)

g (n)
= l. Further, our attack includes a new method to

compare an arithmetic function F (n) formed by the sum and the product of
certain multiplicative arithmetic functions with an integer-valued polynomial
whose leading coefficient is positive, as stated in Theorem 3.2. For details, let us
assume furthermore that F (p) is a polynomial in integers whenever p is prime,
where the leading coefficient is positive. It is clear that there is a comparison
of this polynomial with F (n) whenever n is arbitrary. In fact, define

Fs (n) = f (σ (n) , τ (n) , ϕs (n) , ψs (n) , ...) ,

where s ∈ N is a parameter and f is an arbitrary integer-valued function of
several variables. Assume that for any prime p,

Fs (p) = pas+b + cas+b−1p
as+b−1 + ...+ c1p+ c0, (18)

where a, b ≥ 1 and ci ≥ 0, for i = 0, 1, ..., as+ b− 1. By the help of (18) we ask
whether the Diophantine inequality

Fs (n) ≥ nas+b + cas+b−1n
as+b−1 + ...+ c1n+ c0

holds for each number n ≥ 2 or not.
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